If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144=(x^2+2x)+x
We move all terms to the left:
144-((x^2+2x)+x)=0
We calculate terms in parentheses: -((x^2+2x)+x), so:We get rid of parentheses
(x^2+2x)+x
We add all the numbers together, and all the variables
x+(x^2+2x)
We get rid of parentheses
x^2+x+2x
We add all the numbers together, and all the variables
x^2+3x
Back to the equation:
-(x^2+3x)
-x^2-3x+144=0
We add all the numbers together, and all the variables
-1x^2-3x+144=0
a = -1; b = -3; c = +144;
Δ = b2-4ac
Δ = -32-4·(-1)·144
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{65}}{2*-1}=\frac{3-3\sqrt{65}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{65}}{2*-1}=\frac{3+3\sqrt{65}}{-2} $
| 4/r=23 | | -6+7(8+6)=-22+6n | | 36=(2x+12)+2 | | -9.91-9.1b=9.42+5.47-6.3b | | 5×x=15 | | 1.5x+19=3 | | -9+3+14f=14f-4 | | 2n3=10 | | -35x-35x=x | | 4u+8=-10+6u | | -3(q+19)=16-3q-7 | | 21x-19=90 | | 36=(2x+12)+4 | | 3(6+7y)+2(1—5y)=42 | | 10-5h=-6-h | | 1-10z-16=-15-10z | | -3+5v=6-9-v | | 7.6+q+34=12.5 | | -6(x+7)-3x=-96 | | g-9=24 | | -2x-6(x+4)=24 | | -14+2v=7(v+8) | | x)+(x+2)+(X+4)+(x+6)=146 | | -9x+14=-5x-10 | | 256=62-u | | 19k-17+19=20k+18 | | -0.49-2.3h+4.75=2.02-3.9h | | 17+2.8=c+23 | | 3(x+1)+2(x+2=10 | | -16t+18=2(-8+9) | | -7(36)+6y=-1 | | 17+11=y |